National Repository of Grey Literature 3 records found  Search took 0.00 seconds. 
Electrochemical biosensors with spatially separated enzymatic and detection parts for selective analysis in flow-through arrangement
Tvorynska, Sofiia ; Barek, Jiří (advisor) ; Labuda, Ján (referee) ; Korecká, Lucie (referee)
This dissertation thesis presents the newly developed four highly reusable, stable as well as simple, and cost-effective electrochemical (bi)enzymatic biosensors for the selective and reliable determination of choline, acetylcholine, uric acid, and L-lactic acid in flow injection analysis. All biosensors are based on the concept of the spatial separation of the biorecognition part from detection one and amperometric monitoring of the enzymatically consumed oxygen via its four-electron reduction at the highly negative detection potential. In this way, the design of the biosensors includes an easily replaceable enzymatic mini-reactor(s) connected upstream to the flow cell that contains the appropriate silver amalgam-based transducer. The enzymatic mini-reactor based on choline oxidase, uricase, or lactate oxidase was used for choline, uric acid, or L-lactic acid biosensors, respectively. The acetylcholine bienzymatic biosensor includes the consequently connected choline oxidase- and acetylcholinesterase-based mini-reactors. The first part of this thesis focuses on the construction of two different silver amalgam-based electrodes. Specifically, this section discusses the fabrication of a silver solid amalgam electrode covered by mercury film operating in a wall-jet cell and also highlights the...
An Enzymatic Biosensor with Amperometric Detection in a Flow Injection Analysis for the Determination of L-lactic Acid: Development and Application
Tvorynska, Sofiia ; Barek, J. ; Josypčuk, Bohdan
An amperometric biosensor consisting of an enzymatic mini-reactor (lactate oxidase covalently\nattached to −NH2 functionalized mesoporous silica powder SBA−15 using glutaraldehyde) and\na silver amalgam-based screen-printed electrode acting as a transducer was developed for the\ndetermination of L-lactic acid (LA) in FIA. The detection potential of −0.9 V vs. Ag pseudoreference\nelectrode was applied for cathodic detection of enzymatically consumed oxygen.\nUnder the optimized conditions, the constructed biosensor enabled selective determination of\nLA with a micromolar limit of detection. Importantly, the proposed biosensor represented\nexcellent operational stability after ≥350 measurements. Finally, it was successfully applied to\nreal sample analysis.
Construction and application of the amperometric uric acid biosensors based on the covalent immobilization of uricase by different strategies
Tvorynska, Sofiia ; Barek, J. ; Josypčuk, Bohdan
In this work, a promising combination of a biosensor based on the\nenzymatic mini-reactor with the detection principle of four-electron\nreduction of the consumed oxygen at highly negative potential has\nbeen developed for uric acid determination using flow injection\nanalysis. The construction of the biosensor provides a spatial\nsegregation of the biorecognition (uricase-based mini-reactor) and\ndetection (tubular detector of silver solid amalgam (TD-p-AgSA))\nparts. To find out the most appropriate enzyme immobilization\nprotocol, three different strategies of the covalent attachment for\nuricase from Bacillus fastidiosus have been compared. It was found\nthat the biosensor with the mini-reactor based on the covalent\nattachment of uricase via glutaraldehyde to -NH2 functionalized\nmesoporous silica powder MCM-41 showed extremely high stability\n(>1 year) and reusability (at least 600 measurements) The biosensor's\npractical applicability was confirmed by successful determination\nof uric acid in human urine.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.